An Efficient Modified Common Neighbor Approach for Link Prediction in Social Networks
نویسندگان
چکیده
Link prediction in social networks aims at estimating the likelihood of the appearance of a new link between two nodes, based on the existing links and the attributes of the nodes. Many methods for link prediction problem in social networks have been proposed in literature. We especially analyze the shortcomings of common neighbor leading method. Accordingly we generate a new modified common neighbor approach for link prediction in social networks. Our approach efficiently works under the integrated analysis of features along with topological structure of a social network. As a co-authorship network is a true social network, we have considered the co-authorship networks for verifying the effectiveness of the existing leading methods as well as our proposed link prediction method. We have implemented the leading methods as well as our proposed method on two different data domains of co-authorship networks obtained from author lists of papers at five sections of Physics e-Print arXiv, www.arXiv.org. In the first data domain, the papers in the periods (1994 – 1996) and (1997 – 1999) are taken as the training set and testing set respectively. Similarly the papers in the periods (2007 – 2009) and (2010 – 2012) are taken as the training set and testing set for the second data domain. Experimental results show that all the methods are found to perform much better over the random predictor. Again we find that our modified common neighbor approach outperforms over all the existing leading methods considered.
منابع مشابه
A Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملLink Formation in Egocentric Networks: Impacts of Local Degrees and Implications for Link Recommendation
Understanding mechanisms driving link formation in social networks is a long-standing problem that has implications to understanding social structure as well as link prediction and recommendation. Social networks exhibit a high degree of transitivity, which explains the successes of common neighbor-based methods for link prediction. In this paper, we examine mechanisms behind link formation fro...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملپیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها
Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...
متن کاملHidden link prediction based on node centrality and weak ties
Link prediction has been widely used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. In this context, similaritybased algorithms have become the mainstream. However, most of them take into account the contributions of each common neighbor equally to the connection likelihood of two nodes. This paper proposes a model for link predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013